8 research outputs found

    Assessing registration quality via registration circuits

    Get PDF

    Segmentation of the Thalamus in Multi-Spectral MR Images Using a Combination of Atlas-Based and Gradient Graph Cut Methods

    Get PDF
    International audienceTwo popular segmentation methods used today are atlas based and graph cut based segmentation techniques. The atlas based method deforms a manually segmented image onto a target image, resulting in an automatic segmentation. The graph cut segmentation method utilizes the graph cut paradigm by treating image segmentation as a max-flow problem. A specialized form of this algorithm was developed by Lecoeur et al [1], called the spectral graph cut algorithm. The goal of this paper is to combine both of these methods, creating a more stable atlas based segmentation algorithm that is less sensitive to the initial manual segmentation. The registration algorithm is used to automate and initialize the spectral graph cut algorithm as well as add needed spatial information, while the spectral graph cut algorithm is used to increase the robustness of the atlas method. To calculate the sensitivity of the algorithms, the initial manual segmentation of the atlas was both dilated and eroded 2 mm and the segmentation results were calculated. Results show that the atlas based segmentation segments the thalamus well with an average Dice Similarity Coefficient (DSC) of 0.87. The spectral graph cut method shows similar results with an average DSC measure of 0.88, with no statistical difference between the two methods. The atlas based method's DSC value, however, was reduced to 0.76 and 0.67 when dilated and eroded respectively, while the combined method retained a DSC value of 0.81 and 0.74, with a statistical difference found between the two methods

    Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions

    No full text
    Image segmentation has become a vital and often rate-limiting step in modern radiotherapy treatment planning. In recent years, the pace and scope of algorithm development, and even introduction into the clinic, have far exceeded evaluative studies. In this work we build upon our previous evaluation of a registration driven segmentation algorithm in the context of 8 expert raters and 20 patients who underwent radiotherapy for large space-occupying tumours in the brain. In this work we tested four hypotheses concerning the impact of manual segmentation editing in a randomized single-blinded study. We tested these hypotheses on the normal structures of the brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and signed Euclidean distance error to evaluate the impact of editing on inter-rater variance and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods: simultaneous truth and performance level estimation and a novel implementation of probability maps. The experts were presented with automatic, their own, and their peers' segmentations from our previous study to edit. We found, independent of source, editing reduced inter-rater variance while maintaining or improving accuracy and improving efficiency with at least 60% reduction in contouring time. In areas where raters performed poorly contouring from scratch, editing of the automatic segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8% of the total slices contained within the ground truth estimations. These findings suggest that contour editing could be useful for consensus building such as in developing delineation standards, and that both automated methods and even perhaps less sophisticated atlases could improve efficiency, inter-rater variance, and accuracy. © 2013 Institute of Physics and Engineering in Medicine.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore